17.11. 小结

在这一章,我们简单介绍了机器人系统的基本概念,包括通用机器人操作系统、感知系统、规划系统和控制系统等,给读者对机器人问题的基本认识。当前,机器人许多实际问题都有可能通过算法的进一步发展得到解决。另一方面,由于机器人问题设置的特殊性,也使得相应系统与相关硬件的耦合程度更高、更复杂:如何更好地平衡各种传感器负载?如何在计算资源有限的情况下最大化计算效率(实时性)?等等,都需要对计算机系统的设计和使用有更好的理解。

17.12. 参考文献

Aradi, 2020

Aradi, S. (2020). Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems.

Brunke et al., 2021

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S., Panerati, J., & Schoellig, A. P. (2021). Safe learning in robotics: from learning-based control to safe reinforcement learning. Annual Review of Control, Robotics, and Autonomous Systems, 5.

Campos et al., 2021

Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., & Tardós, J. D. (2021). Orb-slam3: an accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics, 37(6), 1874–1890.

Ding et al., 2019

Ding, M., Wang, Z., Sun, J., Shi, J., & Luo, P. (2019). Camnet: coarse-to-fine retrieval for camera re-localization. Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2871–2880).

Huang et al., 2018

Huang, H., Shen, Y., Sun, J., & Lu, C. (2018). Navigationnet: a large-scale interactive indoor navigation dataset. arXiv preprint arXiv:1808.08374.

Huang et al., 2021

Huang, J., Xie, S., Sun, J., Ma, Q., Liu, C., Lin, D., & Zhou, B. (2021 , 16–18 Nov). Kober, J., Ramos, F., & Tomlin, C. (Eds.). Learning a decision module by imitating driver’s control behaviors. Proceedings of the 2020 Conference on Robot Learning (pp. 1–10). PMLR. URL: https://proceedings.mlr.press/v155/huang21a.html

Li et al., 2021a

Li, Q., Peng, Z., Xue, Z., Zhang, Q., & Zhou, B. (2021). Metadrive: composing diverse driving scenarios for generalizable reinforcement learning. ArXiv preprint, abs/2109.12674. URL: https://arxiv.org/abs/2109.12674

Li et al., 2021b

Li, Q., Peng, Z., & Zhou, B. (2021). Efficient learning of safe driving policy via human-ai copilot optimization. International Conference on Learning Representations.

Lu & Shi, 2021

Lu, S., & Shi, W. (2021). The emergence of vehicle computing. IEEE Internet Computing, 25(3), 18-22. doi:10.1109/MIC.2021.3066076

Maruyama et al., 2016

Maruyama, Y., Kato, S., & Azumi, T. (2016). Exploring the performance of ros2. Proceedings of the 13th ACM SIGBED International Conference on Embedded Software (EMSOFT) (pp. 1–10).

Pan et al., 2020

Pan, B., Sun, J., Leung, H. Y. T., Andonian, A., & Zhou, B. (2020). Cross-view semantic segmentation for sensing surroundings. IEEE Robotics and Automation Letters, 5(3), 4867-4873. doi:10.1109/LRA.2020.3004325

Peng et al., 2021a

Peng, Z., Li, Q., Hui, K. M., Liu, C., & Zhou, B. (2021). Learning to simulate self-driven particles system with coordinated policy optimization. Advances in Neural Information Processing Systems, 34.

Peng et al., 2021b

Peng, Z., Li, Q., Liu, C., & Zhou, B. (2021). Safe driving via expert guided policy optimization. 5th Annual Conference on Robot Learning.

Sun et al., 2022a

Sun, J., Huang, D.-A., Lu, B., Liu, Y.-H., Zhou, B., & Garg, A. (2022). Plate: visually-grounded planning with transformers in procedural tasks. IEEE Robotics and Automation Letters, 7(2), 4924-4930. doi:10.1109/LRA.2022.3150855

Sun et al., 2022b

Sun, J., Kousik, S., Fridovich-Keil, D., & Schwager, M. (2022). Self-supervised traffic advisors: distributed, multi-view traffic prediction for smart cities. arXiv preprint.

Sun et al., 2021a

Sun, J., Sun, H., Han, T., & Zhou, B. (2021 , 16–18 Nov). Kober, J., Ramos, F., & Tomlin, C. (Eds.). Neuro-symbolic program search for autonomous driving decision module design. Proceedings of the 2020 Conference on Robot Learning (pp. 21–30). PMLR. URL: https://proceedings.mlr.press/v155/sun21a.html

Sun et al., 2021b

Sun, J., Yu, L., Dong, P., Lu, B., & Zhou, B. (2021). Adversarial inverse reinforcement learning with self-attention dynamics model. IEEE Robotics and Automation Letters, 6(2), 1880–1886.

Xu et al., 2019

Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., & Li, H. (2019). Depth completion from sparse lidar data with depth-normal constraints. Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2811–2820).

Yi et al., 2020

Yi, H., Shi, S., Ding, M., Sun, J., Xu, K., Zhou, H., … Wang, G. (2020). Segvoxelnet: exploring semantic context and depth-aware features for 3d vehicle detection from point cloud. 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2274–2280).